On Generalized Integral Operator Based on Salagean Operator

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Integral Operator Involving Generalized Hypergeometric Function

Due to rigorous work on integral operators and the hypergeomet-ric functions, we define here an integral operator involving generalized hypergeometric function. By means of this generalized function, we introduce new classes of analytic functions and study their properties. 1 Introduction and preliminaries. Let H be the class of functions analytic in U := {z ∈ C : |z| < 1} and A be the subclass...

متن کامل

On an integral operator

In this paper we define a general integral operator for analytic functions in the open unit disk and we determine some conditions for univalence of this integral operator.

متن کامل

Generalized Integral Operator and Multivalent Functions

Let A(p) be the class of functions f : f(z) = z + ∑∞ j=1 ajz p+j analytic in the open unit disc E. Let, for any integer n > −p, fn+p−1(z) = z p (1−z)n+p . We define f (−1) n+p−1(z) by using convolution ? as fn+p−1(z) ? f (−1) n+p−1(z) = z (1−z)n+p . A function p, analytic in E with p(0) = 1, is in the class Pk(ρ) if ∫ 2π 0 ∣∣∣Rep(z)−ρ p−ρ ∣∣∣ dθ ≤ kπ, where z = re, k ≥ 2 and 0 ≤ ρ < p. We use t...

متن کامل

On the univalence of an integral operator

Let U = {z ∈ C : |z| < 1} be the unit disk in the complex plane, and let A be the class of functions which are analytic in the unit disk normalized with f (0) = f ′ (0)− 1 = 0. We denote by P the class of the functions p which are analytic in U , p (0) = 1 and Re p (z) > 0, for all z ∈ U . Let S be the subclass of A, consisting of all univalent functions f in U , and we consider S∗ the subclass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyungpook mathematical journal

سال: 2008

ISSN: 1225-6951

DOI: 10.5666/kmj.2008.48.3.359